Quantum of optical absorption in two-dimensional semiconductors.
نویسندگان
چکیده
The optical absorption properties of free-standing InAs nanomembranes of thicknesses ranging from 3 nm to 19 nm are investigated by Fourier transform infrared spectroscopy. Stepwise absorption at room temperature is observed, arising from the interband transitions between the subbands of 2D InAs nanomembranes. Interestingly, the absorptance associated with each step is measured to be ∼1.6%, independent of thickness of the membranes. The experimental results are consistent with the theoretically predicted absorptance quantum, AQ = πα/nc for each set of interband transitions in a 2D semiconductor, where α is the fine structure constant and nc is an optical local field correction factor. Absorptance quantization appears to be universal in 2D systems including III-V quantum wells and graphene.
منابع مشابه
The Effect of pH on the Optical Band Gap of PbSe Thin Film with Usability in the Quantum Dot Solar Cell and Photocatalytic Activity
This study was an attempt to provide a simple solution processed synthesis route for Lead Selenide (PbSe) nanostructure thin films using the chemical bath deposition (CBD) method which is commercially available in inexpensive precursors. In the CBD method, the preparation parameters play a considerable role and determine the nature of the final product formed. Known as two main factors, the eff...
متن کاملGain optimization of the optical waveguide based on the quantum box core/shell structure
In order to implement an integrated optical quantum circuit, designing waveguides based on the quantum box is of prime importance. To do this we have investigated optical waveguide both with and without optical pumping. The rate of absorption and emission using an array of AlGaAs/GaAs quantum box core/shell structure in the optical waveguide with various pumping intensities has computed. By con...
متن کاملGain optimization of the optical waveguide based on the quantum box core/shell structure
In order to implement an integrated optical quantum circuit, designing waveguides based on the quantum box is of prime importance. To do this we have investigated optical waveguide both with and without optical pumping. The rate of absorption and emission using an array of AlGaAs/GaAs quantum box core/shell structure in the optical waveguide with various pumping intensities has computed. By con...
متن کاملBias-Induced Optical Absorption of Current Carrying Two-Orbital Quantum Dot with Strong Electron-Phonon Interaction (Polaron Regime)
The one photon absorption (OPA) cross section of a current carrying two-orbital quantum dot (QD) with strong electron-phonon interaction (polaron regime) is considered. Using the self-consistent non-equilibrium Hartree-Fock (HF) approximation, we determine the dependence of OPA cross section on the applied bias voltage, the strength of effective electron-electron interaction, and level spacing ...
متن کاملZSM-5 Zeolite As Host Material for Semiconductor Nanoparticles
This work describes the optical and structure properties of nickel sulfide and cobalt sulfide nanoparticles in ZSM-5 zeolite. The samples were obtained by sulfidation of the Ni2+ and Co2+ ion-exchange ZSM-5 zeolites in a Na2S solution at room temperature. The optical properties of the samples were studied by UV-visible spectroscopy. Their crystalline structure and morphology were studied by X-r...
متن کاملInvestigation of the Third-Order Nonlinear Optical Susceptibilities and Nonlinear Refractive Index In Pbs/Cdse/Cds Spherical Quantum Dot
In this study the third order nonlinear susceptibilities are theoreticallycalculated for an electron confined in an isolated PbS/ CdSe/ CdS spherical core-shellshellquantum dots. Our calculation is associated with intersubband transitions in theconduction band. We used the effective mass approximation in this study which is asimple and straightforward study of the third-order optical nonlineari...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 110 29 شماره
صفحات -
تاریخ انتشار 2013